БУЛЕВА АЛГЕБРА
Следующий шаг, как мы изучили несколько раз до этого, это добавление булевой алгебры. В прошлом этот шаг по крайней мере удваивал количество кода, который мы должны были написать. Когда я прошел эти шаги в своем уме, я обнаружил, что отклоняюсь все больше и больше от того, что мы делали в предыдущих главах. Чтобы освежить вашу память, я отметил, что Паскаль обрабатывает булевы операторы в значительной степени идентично способу, которым он обрабатывает арифметические операторы. Булево "and" имеет тот же самый уровень приоритета, что и умножение, а "or" то же что сложение. Си, с другой стороны, устанавливает их на различных уровнях приоритета, которые занимают 17 уровней. В нашей более ранней работе я выбрал что-то среднее, с семью уровнями. В результате, мы закончили на чем-то называющемся булевыми выражениями, соответствующим в большинстве деталей арифметическим выражениям, но на другом уровне приоритета. Все это, как оказалось, возникло потому, что мне не хотелось помещать скобки вокруг булевых выражений в утверждениях типа:
IF (c >= 'A') and (c <= 'Z') then ...
При взгляде назад, это кажется довольно мелкой причиной для добавления многих уровней сложности в синтаксический анализатор. Возможно более существенно то, что я не уверен что был даже способен избежать скобок.
Чтобы оттолкнуться, давайте начнем заново, применяя более Паскаль подобный подход и просто обрабатывая булевы операторы на том же самом уровне приоритетов что и арифметические. Мы увидим, куда это нас приведет. Если это окажется тупиком, мы всегда сможем возвратиться к предыдущему подходу.
С начала, мы добавим в Expression операторы "уровня сложения". Это легко сделать; во-первых, измените функцию IsAddop в модуле Scanner чтобы включить два дополнительных оператора: '|' для "или" и "~" для "исключающее или":
{--------------------------------------------------------------}
function IsAddop(c: char): boolean;
begin
IsAddop := c in ['+','-', '|', '~'];
end;
{--------------------------------------------------------------}
Затем, мы должны включить анализ операторов в процедуру Expression:
{--------------------------------------------------------------}
procedure Expression;
begin
SignedTerm;
while IsAddop(Look) do
case Look of
'+': Add;
'-': Subtract;
'|': _Or;
'~': _Xor;
end;
end;
{--------------------------------------------------------------}
(Символы подчеркивания необходимы, конечно, потому что "or" and "xor" являются зарезервированными словами Turbo Pascal).
Затем процедуры _Or and _Xor:
{--------------------------------------------------------------}
{ Parse and Translate a Subtraction Operation }
procedure _Or;
begin
Match('|');
Push;
Term;
PopOr;
end;
{--------------------------------------------------------------}
{ Parse and Translate a Subtraction Operation }
procedure _Xor;
begin
Match('~');
Push;
Term;
PopXor;
end;
{--------------------------------------------------------------}
И, наконец, новые процедуры генерации кода:
{--------------------------------------------------------------}
{ Or TOS with Primary }
procedure PopOr;
begin
EmitLn('OR (SP)+,D0');
end;
{--------------------------------------------------------------}
{ Exclusive-Or TOS with Primary }
procedure PopXor;
begin
EmitLn('EOR (SP)+,D0');
end;
{--------------------------------------------------------------}
Теперь давайте протестируем транслятор (вы возможно захотите изменить вызов в Main обратно на вызов Expression просто чтобы избежать необходимости набирать каждый раз "x=" для присваивания).
Пока все хорошо. Синтаксический анализатор четко обрабатывает выражения вида:
x|y~z
К сожалению, он также не делает ничего для того, чтобы защитить нас от смешивания булевой и арифметической алгебры. Он радостно сгенерирует код для:
(a+b)*(c~d)
Мы говорили об этом немного в прошлом. Вообще, правила какие операции допустимы а какие нет не могут быть применены самим синтаксическим анализатором, потому что они не являются частью синтаксиса языка, а скорее его семантики. Компилятор, который не разрешает смешанные выражения такого вида должен распознать, что c и d являются булевыми переменными а не числовыми и передумать об их умножении на следующем шаге. Но такая "охрана" не может быть выполнена синтаксическим анализатором; она должна быть обработана где-то между синтаксическим анализатором и генератором кода. Мы пока не в таком положении, чтобы устанавливать такие правила, потом что у нас нет способа ни объявления типов, ни таблицы идентификаторов для сохранения в ней типов. Так что, для того что у нас на данный момент работает, синтаксический анализатор делает точно то, что он предназначен делать.
В любом случае, уверены ли мы, что не хотим разрешить операции над смешанными типами? Некоторое время назад мы приняли решение (или по крайней мере я принял) чтобы принимать значение 0000 как логическую "ложь" и -1 или FFFFh как логическую "истину". Хорошо в этом выборе то, что побитовые операции работают точно таким же способом, что и логические. Другими словами, когда мы выполняем операцию с одним битом логической переменной, мы делаем это над всеми из них. Это означает, что мы не должны делать различия между логическими и поразрядными операциями, как это сделано в C операторами & и &&, и | и ||. Уменьшение числа операторов наполовину конечно не выглядит совсем плохим.
С точки зрения данных в памяти, конечно, компьютер и компилятор не слишком интересуются, представляет ли число FFFFh логическую истину или число -1. Должны ли мы? Я думаю что нет. Я могу придумать множество примеров (хотя они могут быть рассмотрены как "мудреный" код) где возможность смешивать типы могла бы пригодиться. Пример, функция дельты Дирака, которая могла бы быть закодирована в одной простой строке:
-(x=0)
или функция абсолютного значения (определенно сложный код!):
x*(1+2*(x<0))
Пожалуйста, заметьте, что я не защищаю программирование подобным образом как стиль жизни. Я почти обязательно написал бы эти функции в более читаемой форме, используя IF, только для того, чтобы защитить от запутывания того, кто будет сопровождать программу в будущем. Все же возникает моральный вопрос: Имеем ли мы право осуществлять наши идеи о хорошей практике кодирования на программисте, написав язык так, чтобы он не смог сделать что-нибудь не так? Это то, что сделал Никлаус Вирт во многих местах Паскаля и Паскаль критиковался за это - как не такой "прощающий" как Си.
Интересная параллель представлена в примере дизайна Motorola 68000. Хотя Motorola громко хвастается об ортогональности их набора инструкций, факт то, что он является далеко не ортогональным. К примеру, вы можете считать переменную по ее адресу:
MOVE X,D0 (где X это имя переменной)
но вы не можете записать ее таким же образом. Для записи вы должны загрузить в регистр адреса адрес X. То же самое остается истиной и для PC-относительной адресации.
MOVE X(PC),DO (допустимо)
MOVE
D0,X(PC) (недопустимо)
Когда вы начинаете спрашивать, как возникло такое не ортогональное поведение, вы находите, что кто-то в Motorola имел некоторые теории о том, как должно писаться программное обеспечение. В частности, в этом случае они решили, что самомодифицирующийся код, который вы можете реализовать, используя PC-относительные записи - Плохая Вещь. Следовательно, они разработали процессор, запрещающий это. К сожалению, по ходу дела они также запретили все записи в форме, показанной выше, даже полезные. Заметьте, что это было не что-то, сделанное по умолчанию. Должна была быть сделана дополнительная дизайнерская работа, добавлены дополнительные ограничения для уничтожения естественной ортогональности набора инструкций.
Один из уроков, которым я научился в жизни: Если у вас есть два выбора и вы не можете решить которому их них последовать, иногда самое лучшее - не делать ничего. Зачем добавлять дополнительные ограничители в процессор, чтобы осуществить чужие представления о хорошей практике программирования? Оставьте эти инструкции и позвольте программистам поспорить что такое хорошая практика программирования. Точно так же, почему мы должны добавлять дополнительный код в наш синтаксический анализатор для проверки и предупреждения условий, которые пользователь мог бы предпочесть использовать? Я предпочел бы оставить компилятор простым и позволить программным экспертам спорить, должна ли такая практика использоваться или нет.
Все это служит как объяснение моего решения как избежать смешанной арифметики: я не буду ее избегать. Для языка, предназначенного для системного программирования, чем меньше правил, тем лучше. Если вы не согласны, и хотите выполнять проверку на такие условия, мы сможем сделать это, когда у нас будет таблица идентификаторов.
БУЛЕВО "AND"
С это небольшой философией, мы можем приступить к оператору "and", который пойдет в процедуру Term. К настоящему времени вы возможно сможете сделать это без меня, но в любом случае вот код:
В Scanner:
{--------------------------------------------------------------}
function IsMulop(c: char): boolean;
begin
IsMulop := c in ['*','/', '&'];
end;
{--------------------------------------------------------------}
в Parser:
{--------------------------------------------------------------}
procedure Term;
begin
Factor;
while IsMulop(Look) do
case Look of
'*': Multiply;
'/': Divide;
'&': _And;
end;
end;
{--------------------------------------------------------------}
{ Parse and Translate a Boolean And Operation }
procedure _And;
begin
Match('&');
Push;
Factor;
PopAnd;
end;
{--------------------------------------------------------------}
и в CodeGen:
{--------------------------------------------------------------}
{ And Primary with TOS }
procedure PopAnd;
begin
EmitLn('AND (SP)+,D0');
end;
{--------------------------------------------------------------}
Ваш синтаксический анализатор теперь должен быть способен обрабатывать почти любые виды логических выражений а также (если вы хотите) и смешанные выражения.
Почему не "все виды логических выражений"? Потому что пока мы не имели дела с логическим оператором "not" и с ним все становится сложнее. Логический оператор "not" кажется на первый взгляд идентичным в своем поведении унарному минусу, поэтому моей первой мыслью было позволить оператору исключающего или, '~', дублировать унарный "not". Это не работало. При моей первой попытке процедура SignedTerm просто съедала мой '~' потому что символ проходил проверку на addop но SignedTerm игнорировал все addop за исключением "-". Было бы достаточно просто добавить другую строку в SignedTerm, но это все равно не решит проблему, потому что, заметьте, Expression принимает терм со знаком только для первого аргумента.
Математически, выражение типа:
-a * -b
имеет небольшой или совсем никакого смысла и синтаксический анализатор должен отметить его как ошибку. Но то же самое выражение, использующее логическое "not", имеет точный смысл:
not a and not b
В случае с этими унарными операторами выбор заставить их работать таким же самым способом кажется искусственным принуждением, жертвованием приемлемым поведением на алтаре простоты реализуемости. Хотя я полностью за сохранение реализации настолько простой, насколько возможно, я не думаю, что мы должны делать это за счет приемлемости. Исправления подобные этому, приведут к потере основной детали, которая заключается в том, чтобы логическое "not" просто не является тем же самым что унарный минус. Рассмотрим исключающее "or", которое обычно записывается так:
a~b ::= (a and not b) or (not a and b)
Если мы разрешим "not" изменять весь терм, последний терм в круглых скобках интерпретировался бы как:
not(a and b)
что совсем не то же самое. Так что ясно, что о логическом "not" нужно думать как о связанном с показателем а не термом.
Идея перегрузки оператор '~' не имеет смысла и с математической точки зрения. Применение унарного минуса эквивалентно вычитанию из нуля:
-x <=> 0-x
Фактически, в одной из моих более простых версий Expression я реагировал на ведущий addop просто предзагружая нуль, затем обрабатывая оператор как если бы это был двоичный оператор. Но "not" это не эквивалент исключающему или с нулем... которое просто возвратит исходное число. Вместо этого, это исключающее или с FFFFh или -1.
Короче говоря, кажущаяся близость между унарным "not" и унарным минусом разваливается при более близком исследовании. "not" изменяет показатель а не терм и он не имеет отношения ни к унарному минусу, ни исключающему или. Следовательно, он заслуживает своего собственного символа для вызова. Какой символ лучше, чем очевидный, также используемый в Си символ "!"? Используя правила того как мы думаем должен вести себя "not", мы должны быть способны закодировать исключающее или (предполагая что это нам когда-нибудь понадобится) в очень естественной форме:
a & !b | !a & b
Обратите внимание, что никаких круглых скобок не требуется - выбранные нам уровни приоритета автоматически заботятся обо всем.
Если вы продолжаете учитывать уровни приоритета, это определение помещает '!' на вершину кучи. Уровни становятся:
1. !
2. (унарный)
3. *, /, &
4. +, -, |, ~
Рассматривая этот список, конечно не трудно увидеть, почему мы имели проблему при использовании '~' как символа "not"!
Так, как мы механизируем эти правила? Таким же самым способом, как мы сделали с SignedTerm, но на уровне показателя. Мы определим процедуру NotFactor:
{--------------------------------------------------------------}
{ Parse and Translate a Factor with Optional "Not" }
procedure NotFactor;
begin
if Look ='!' then begin
Match('!');
Factor;
Notit;
end
else
Factor;
end;
{--------------------------------------------------------------}
и вызовем ее из всех мест, где мы прежде вызывали Factor, т.е. из Term, Multiply, Divide и _And. Обратите внимание на новую процедуру генерации кода:
{--------------------------------------------------------------}
{ Bitwise Not Primary }
procedure NotIt;
begin
EmitLn('EOR #-1,D0');
end;
{--------------------------------------------------------------}
Испытайте ее сейчас с несколькими простыми случаями. Фактически, попробуйте пример с исключающим или:
a&!b|!a&b
Вы должны получить код (без комментариев, конечно):
MOVE A(PC),DO ; load a
MOVE D0,-(SP) ; push it
MOVE B(PC),DO ; load b
EOR #-1,D0 ; not it
AND (SP)+,D0 ; and with a
MOVE D0,-(SP) ; push result
MOVE A(PC),DO ; load a
EOR #-1,D0 ; not it
MOVE D0,-(SP) ; push it
MOVE B(PC),DO ; load b
AND (SP)+,D0 ; and with !a
OR (SP)+,D0 ; or with first term
Это точно то, что мы хотели получить. Так что, по крайней мере, и для арифметических и для логических операторов наш новый приоритет и новый, более тонкий синтаксис, поддерживают друг друга. Даже специфическое, но допустимое выражение с ведущим addop:
~x
имеет смысл. SignedTerm игнорирует ведущий '~' как и должно быть, так как выражение эквивалентно:
0~x,
что эквивалентно x.
Когда мы взглянем на созданные нами БНФ, мы обнаружим, что наша булева алгебра добавляет теперь только одну дополнительную строку:
<not_factor> ::= [!] <factor>
<factor> ::= <variable> | <constant> | '(' <expression> ')'
<signed_term> ::= [<addop>] <term>
<term> ::= <not_factor> (<mulop> <not_factor>)*
<expression> ::= <signed_term> (<addop> <term>)*
<assignment> ::= <variable> '=' <expression>
Это большое улучшение предыдущих достижений. Будет ли сохраняться наша удача когда мы примемся за операторы отношений? Мы выясним это скоро, но мы должны будем дождаться следующей главы. У нас выдалась подходящая пауза и я хочу выдать эту главу в ваши руки. Уже прошел год с выпуска Главы 15. Я боюсь признаться, что вся эта текущая глава была готова уже давно, за исключением операторов отношений. Но эта информация совсем не дает вам ничего хорошего, сидя на моем жестком диске, и удерживая ее пока операторы отношений не будут сделаны, я не давал ее в ваши руки все это время. Пришло время выдать ее чтобы вы смогли получить из нее что-нибудь ценное. Кроме того, имеется большое количество серьезных философских вопросов, связанных с операторами отношений, и я предпочел бы сохранить их для отдельной главы, где я смог бы сделать это корректно.
Развлекайтесь с новой более тонкой арифметикой и логическим анализом а я скоро увижу вас с отношениями.